An Introduction to Differential Manifolds by Jacques Lafontaine

The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is named the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the 1st eigenvalue, the Lichnerowicz–Obata's theorem at the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne–Pólya–Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian also are defined.

Additional info for An Introduction to Differential Manifolds

Sample text

Download PDF sample

Rated 4.05 of 5 – based on 19 votes